(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
./0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
++(nil, y) → y
++(x, nil) → x
++(.(y), z) → .(++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
++(nil, y) → y
++(x, nil) → x
++(.(y), z) → .(++(y, z))
++(++(x, y), z) → ++(x, ++(y, z))
Types:
++ :: nil:. → nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
++
(8) Obligation:
Innermost TRS:
Rules:
++(
nil,
y) →
y++(
x,
nil) →
x++(
.(
y),
z) →
.(
++(
y,
z))
++(
++(
x,
y),
z) →
++(
x,
++(
y,
z))
Types:
++ :: nil:. → nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
Generator Equations:
gen_nil:.2_0(0) ⇔ nil
gen_nil:.2_0(+(x, 1)) ⇔ .(gen_nil:.2_0(x))
The following defined symbols remain to be analysed:
++
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
++(
gen_nil:.2_0(
n4_0),
gen_nil:.2_0(
b)) →
gen_nil:.2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
++(gen_nil:.2_0(0), gen_nil:.2_0(b)) →RΩ(1)
gen_nil:.2_0(b)
Induction Step:
++(gen_nil:.2_0(+(n4_0, 1)), gen_nil:.2_0(b)) →RΩ(1)
.(++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b))) →IH
.(gen_nil:.2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
++(
nil,
y) →
y++(
x,
nil) →
x++(
.(
y),
z) →
.(
++(
y,
z))
++(
++(
x,
y),
z) →
++(
x,
++(
y,
z))
Types:
++ :: nil:. → nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
Lemmas:
++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b)) → gen_nil:.2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_nil:.2_0(0) ⇔ nil
gen_nil:.2_0(+(x, 1)) ⇔ .(gen_nil:.2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b)) → gen_nil:.2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
++(
nil,
y) →
y++(
x,
nil) →
x++(
.(
y),
z) →
.(
++(
y,
z))
++(
++(
x,
y),
z) →
++(
x,
++(
y,
z))
Types:
++ :: nil:. → nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
Lemmas:
++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b)) → gen_nil:.2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_nil:.2_0(0) ⇔ nil
gen_nil:.2_0(+(x, 1)) ⇔ .(gen_nil:.2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b)) → gen_nil:.2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)